

Coupling two-dimensional fate and individual-based effects models

Colin Brown, Roman Ashauer & Annika Agatz Environment Department

Regulatory relevant discussion point

- We can use models to incorporate fate knowledge earlier into the pesticide development pipeline
- Bridging disciplines using models will improve risk management for pesticides (with knock-on benefits for risk assessment)

Framework

Integrating pesticide fate, pest ecology and toxicity modelling

Efficacy pipeline: Discovery → Lab screening → Glasshouse → Field studies

Talk structure: Models → Evaluation → Applications Exemplar: corn rootworm in maize

Fate model

Root growth, water & pesticide 2-DROPS

2-DROPS

Agatz, A. & Brown, C. D. (2017). Introducing the 2-DROPS model for two-dimensional simulation of crop roots and pesticide within the soil-root zone. Science of the Total Environment 586:966-975.

Problem formulation

- Models for pesticide fate in soil are primarily 1-D
 - Limiting to assess strategies for pesticide placement in soil (seed treatment, furrow or band applications etc.)

- Existing 2-D models are parameter/computation intensive and often have simplified representations of the crop root system
 - Limiting to integrate efficacy against root damaging pests

2-DROPS

Temporal and spatial resolution

- Daily time step
- Grid cells of 1 * 1 * 1 cm
- Simulates a cross section through one plant row

• Maize example: 76 * 100 * 1 cm

Main difference from most 2-D fate models

Other 2-D models

Root distribution with total biomass

Water extraction from root distribution zone according to hydraulic gradient

Root segment with individual biomass

Water extraction from individual root segments

2-DROPS

2-DROPS

Canopy interception

Sequence for water uptake by roots

2-DROPS

Water transport in the soil profile

Horizontal hydraulic gradient = $\theta_{\text{mob}(1)}/\theta_{\text{mob}(2)}$

Vertical hydraulic gradient = $\theta_{\text{mob}(1)}/\theta_{\text{mob}(3)}$

2-DROPS

Seed

Clothianidin60 days post-application

Broadcast

Furrow

Band

Toxicity model

Toxicokinetics & Toxicodynamics GUTS

GUTS

Agatz, A., Schumann, M. M., French, B. W., Brown, C. D. & Vidal, S. (2018). Assessment of acute toxicity tests and rhizotron experiments to characterise lethal and sub-lethal control of soil-based pests. Pest Management Science. E-pub ahead of print: https://doi.org/10.1002/ps.4922

Toxicity model

Toxicokinetics & ToxicodynamicsGUTS

Temporally explicit pest mortality from a.i. in the soil profile.

Efficacy

Pest ecology & crop damage POPP-Corn

Agatz, A., Ashauer, R., Sweeney, P. & Brown, C. D. Prediction of pest pressure on corn root nodes: the POPP-Corn model. *Journal of Pest Science* **90**, 161-172 (2016).

Pest ecology & crop damage POPP-Corn

Pest ecology & crop damage POPP-Corn

Rootworm IBM

Pest ecology & crop damage POPP-Corn

- Movement only when not enough food in patch
- Moving distance (frequency of movement) for all 3 instars the same
- Moving distance depends on soil type
 - "Sandy loam" 1 cm / 6h (Strnad 1987)
 - "Silt loam" 1 cm / 4h (Strnad 1987)
 - "Sand" 1cm/h (Strnad 1987)
- Movement preference for larvae:
 - 1st instar: root tips (young roots)
 - 2nd instar: middle aged roots
 - 3rd instar: oldest roots *

[* Approximation following Clark et al. 2006]

Pest ecology & crop damage POPP-Corn

Model predicts root damage due to larval feeding using a node injury scale (NIS) for comparison with field observations

Pest ecology & crop damage POPP-Corn

The framework (combined model in NetLogo)

Pesticide activity in soil COMPASS

Conclusions

- Temporally- and spatially explicity
 - Co-location of root / pest / pesticide ?
- In silico test bed that allows virtual field trials
- Bridging across disciplines changes the questions that can be asked
 - e.g. influence of fate profile in driving variability in efficacy

Regulatory relevant discussion point

- We can use models to incorporate fate knowledge earlier into the pesticide development pipeline
- Bridging disciplines using models will improve risk management for pesticides (with knock-on benefits for risk assessment)

Thank you!