

A standardised approach to identify worst-case FOCUS surface water exposure profiles using a TK/TD model

Outline

- History of TK modelling in the registration process
- Definition of problem
- Approach in the past (EPAT)
- GUTS approach
- Step-wise approach
 - Calculation of PECsw
 - 2. Calibration of GUTS based on standard laboratory data
 - 3. Forecast calculation with PECsw considering the EU assessment factor
 - 4. Selection of worst case exposure profiles
 - 5. Derivation of laboratory exposure profile
- Outcome

History of TK modelling

Pirimicarb (Carbamate) 2005

SETAC 2007

GD 2009

SETAC 2012

SETAC 2013

IEAM 2015

Recommendations on how to use TK/TD model in acute risk assessment for vertebrates.

EFSA August 2018

SO TK/TD modeling

TKTD guidance ??
Official tool ??

TK (Body burden): Acceptance

Northern Zone (GD)

(Higher Tier Risk Assessment for Birds and Mammals in Northern Zone)

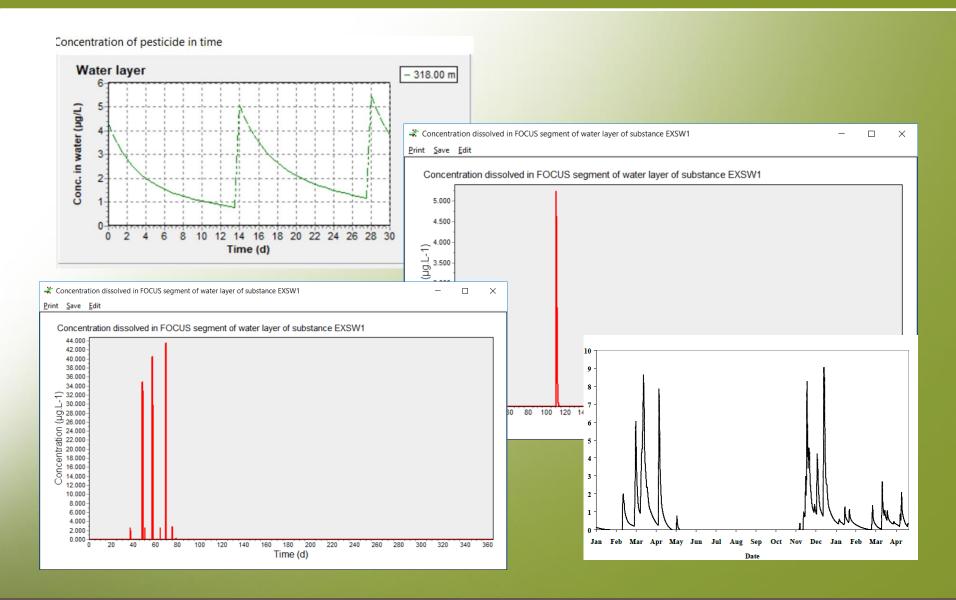
 [...] body burden approach are not considered appropriate for the Northern Zone until validated models and guidance for use are available.

Mediterranean Countries

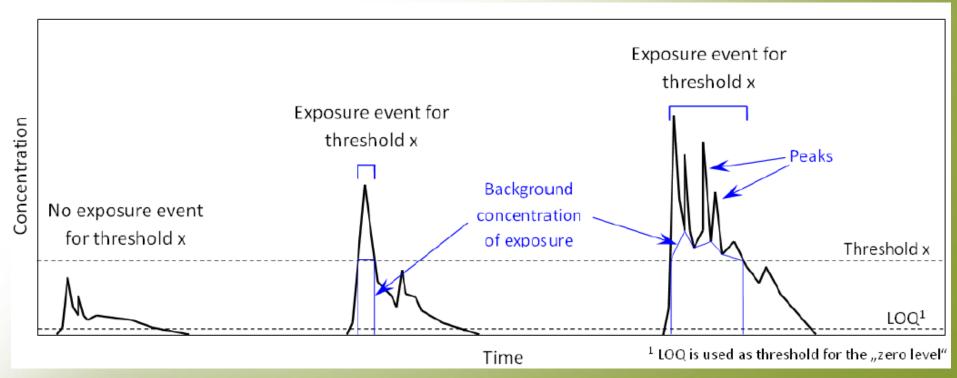
- Body burden modelling <u>accepted at national level</u> (e.g. PORTUGAL, Expert judgment needed for SPAIN)
- GREECE (national requirement, 6. Ecotoxicology)
 - Use of Body Burden Model for higher Tier assessment is acceptable

Central Zone

CTGB (NL)


Problem definition

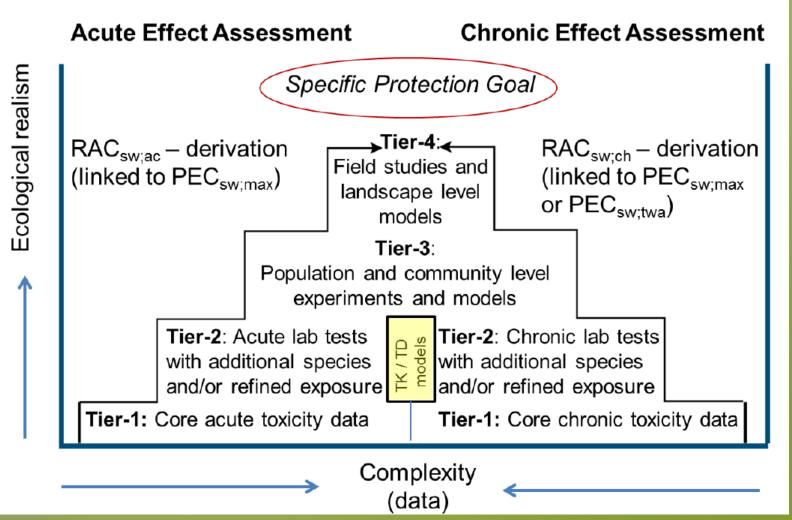
Why do we need TK/TD models in aquatic risk assessments?


PEC > RAC

- Tier 1 aquatic risk assessment for PPPs frequently calls for the use of higher tier approaches to evidence an acceptable risk to aquatic organisms.
- Laboratory pulsed exposure experiments (Tier 2c) can be used to test the effects of varying exposure concentrations on the mortality and/or immobilization of organisms
- How to determine the relevant exposure profiles?

Exposure peaks

EPAT approach



Definition of exposure events and peaks calculated in EPAT.

Threshold conc.	Event no.	Start date & time	t[day]	Max.conc.	Duration [days]	Interval [days]	No.extrema	AUC [μg/L*h]	TWAC-event [µg/L]	TWAC-background [μg/L]
1.000e-10	1	01.01.1986 01:00:00	0.042	1.635e-03	364.958	-	114	2.644e+00	3.019e-04	1.178e-05
1.000e-05	1	01.01.1986 01:00:00	0.042	1.635e-03	364.958	-	114	2.644e+00	3.019e-04	1.178e-05
1.000e-03	1	13.09.1986 07:00:00	255.292	1.426e-03	0.250	-	1	7.985e-03	1.331e-03	4.075e-05
1.000e-03	2	19.10.1986 06:00:00	291.250	1.507e-03	0.375	35.708	1	1.243e-02	1.382e-03	4.087e-05

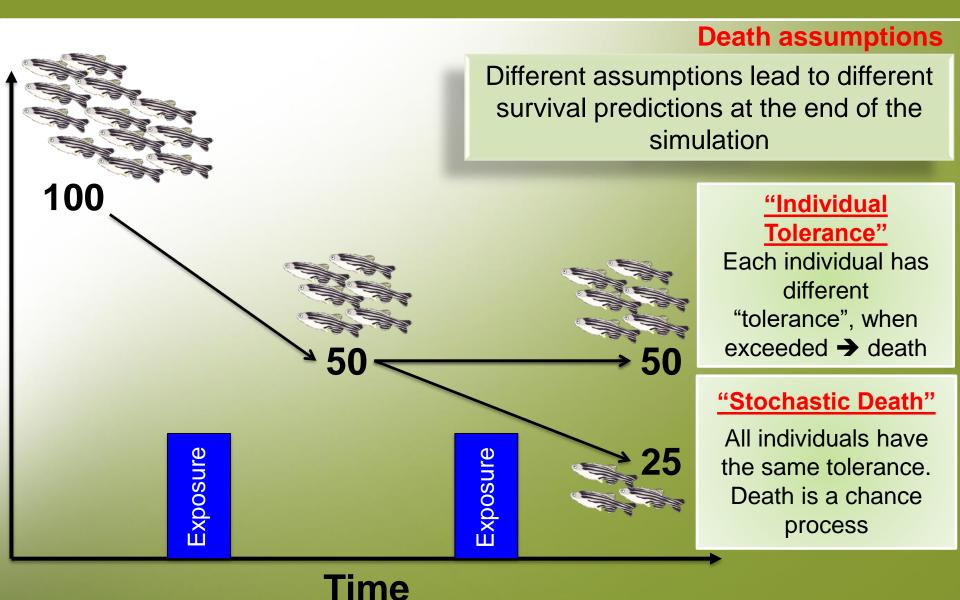
Example EPAT event file

GUTS approach

EFSA PPR Panel. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal 11, 2009.

GUTS approach

TOXICOKINETICS AND DAMAGE DYNAMICS Full GUTS Reduced GUTS (GUTS RED) No internal concentration in the model, Internal concentration explicitly modelled, scaled damage expressed in units of the scaled damage expressed in units of the external (water) concentration (Dw) internal concentration (D_i) $\frac{dC_{i}(t)}{dt} = \mathbf{k_{in}} \times C_{w}(t) - \mathbf{k_{out}} \times C_{i}(t)$ $\frac{\mathrm{d}D_{w}(t)}{\mathrm{d}t} = \mathbf{k}_{D} \times (C_{w}(t) - D_{w}(t))$ $\frac{\mathrm{d}D_i(t)}{\mathrm{d}t} = \mathbf{k}_{\mathrm{R}} \times (C_i(t) - D_i(t))$ TOXICODYNAMICS AND DEATH MECHANISM SD model IT model



EFSA, SO TKTD (2018)

- Toxicokinetics: What the organism does with the toxicant
- Toxicodynamics: What the toxicant does to the body

Exposure

GUTS-Toxicodynamics (TD)

Model selection

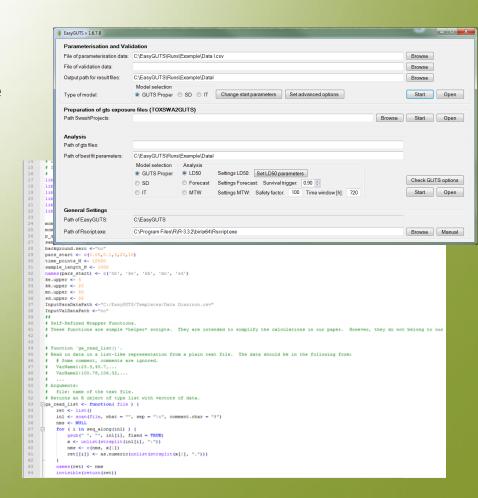
 Higher tier procedures regarding modelling differ between exposure and effect risk assessment:

Exposure modelling:

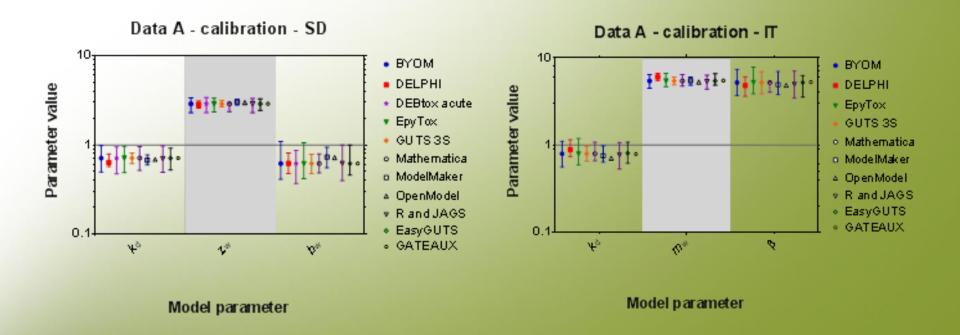
- Check model
- Check scenarios
- Check mitigation measures
- Applicant knows the outcome of the RA

Effect modelling:

- Select a model of your choice
- Send calculations,
 program, manual, TRACE
 document and source
 code
- Applicant does not know the outcome of the RA


GUTS implementations

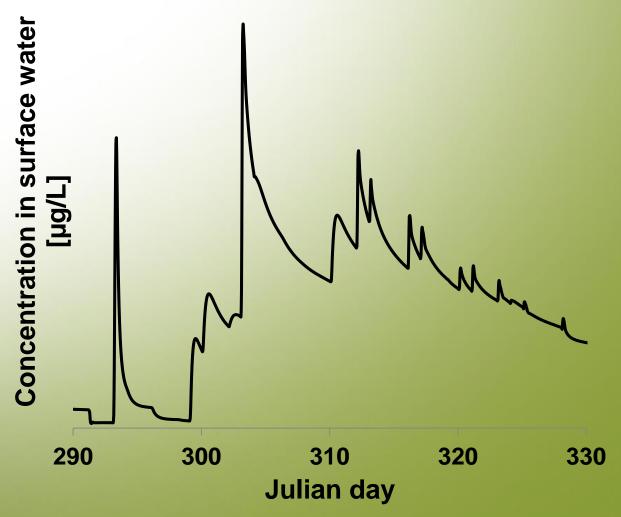
Software	Participant(s)	Affiliation			
BYOM / Matlab	Tjalling Jager	DEBtox research			
DEBtox	Tjalling Jager	DEBtox research			
DELPHI	Andre Gergs,	Bayer Crop Science			
DELPHI	Thomas Preuss	Bayer Crop Science			
ЕруТох	Raymond Nepstad	Sintef			
GUTS 3S	Udo Hommen,	Fraunhofer IME			
0010 00	Judith Klein	Tradifficier fivil			
Mathematica	Andreas Focks	Alterra			
ModelMaker	Roman Ashauer	University of York			
OpenModel	Nina Cedergreen,	University of Copenhagen			
Орениюсен	Kristoffer Dalhoff	Offiversity of Coperinagen			
R/JAGS	Sandrine Charles,	University of Lyon			
NONOS	Virgile Baudrot	Offiversity of Lyon			
EasyGUTS	Dirk Nickisch	RIFCON			
GATEAUX	Sam Maynard	Syngenta			


Jager T. & Ashauer R. Modelling survival under chemical stress - A comprehensive guide to the GUTS framework (2018)

EasyGUTS

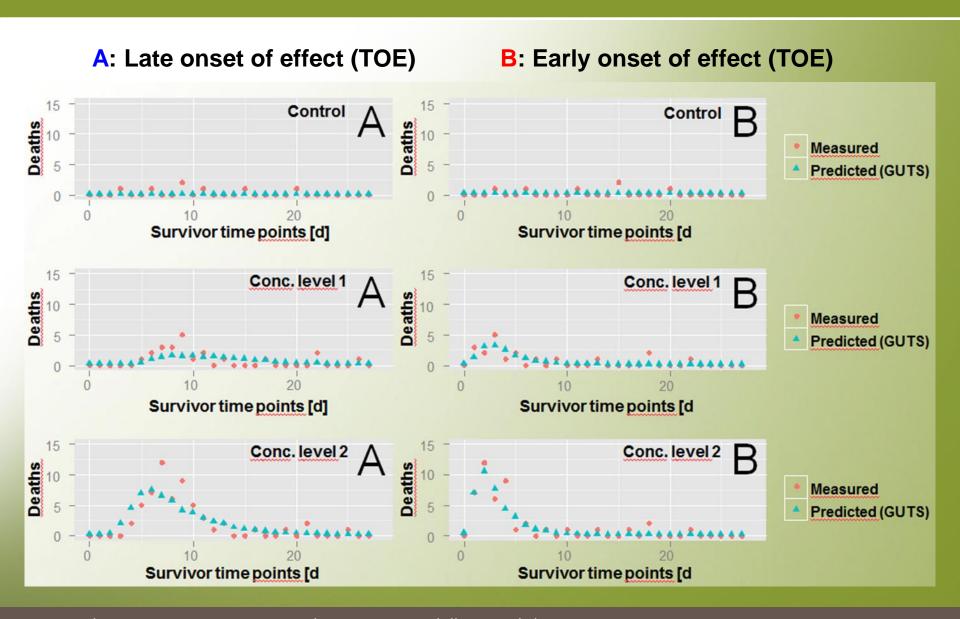
- EasyGUTS is an user interface to handle and run R scripts
- Approach comparable to the KinGUI package (Windows GUI + Rscript.exe)
- Based on R package "GUTS" and calibration approach published by Albert et al. 2016

Example results



Jager T. & Ashauer R. Modelling survival under chemical stress - A comprehensive guide to the GUTS framework (2018)

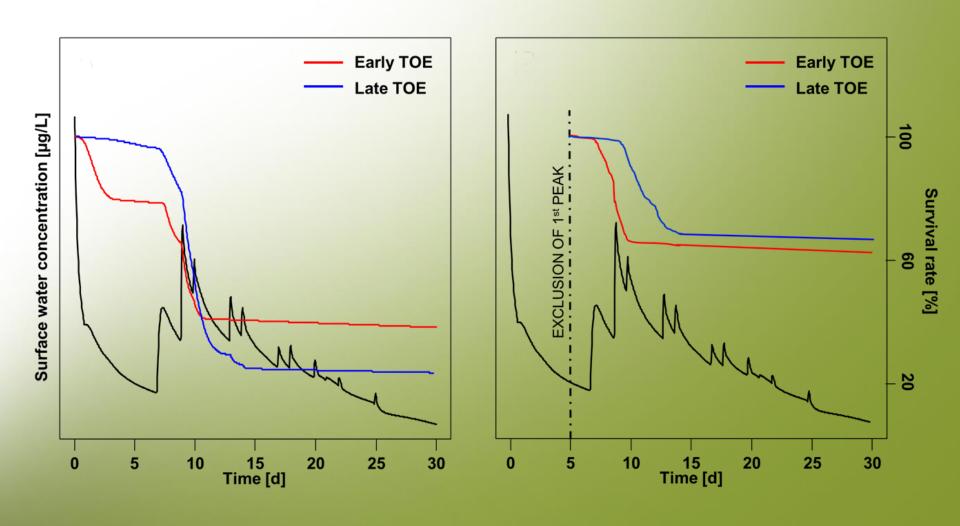
Stepwise GUTS approach


- Calculation of PECsw
- Calibration and Validation of GUTS based on standard laboratory data
- 3. Forecast calculation with PECsw
- 4. Selection of worst case exposure profiles
- 5. Derivation of laboratory exposure profile

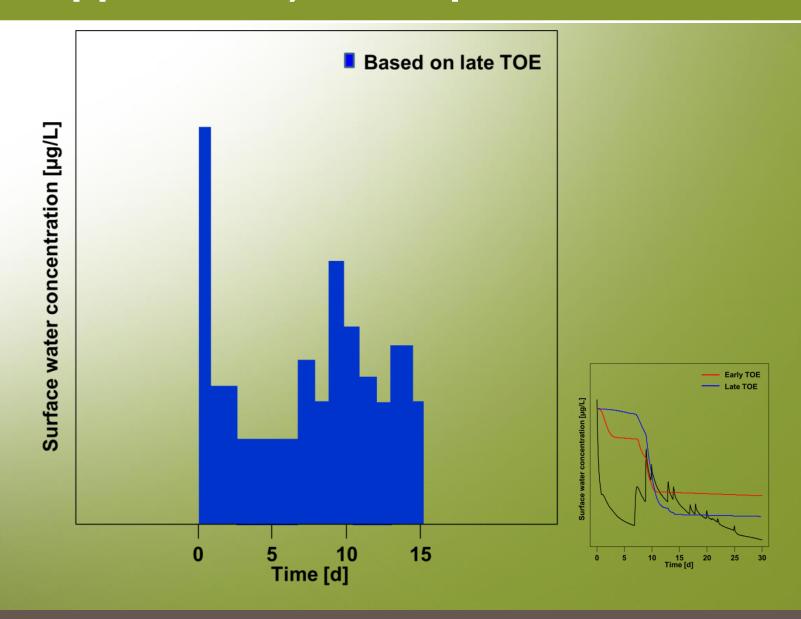
Stepwise approach: 1) PECsw

Calculation of predicted exposure patterns with FOCUS-SW models, e.g. drift and drainage inputs according to the FOCUS D2 (ditch) scenario.

Stepwise approach: 2) GUTS Calibration

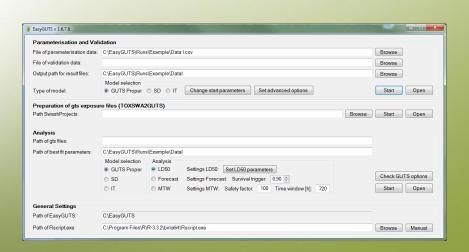

Stepwise approach: 3) Forecast

Estimated mortalities (%) compared to controls calculated with a calibrated GUTS model and exposure profiles based on FOCUS SW models.


Crop / Application rate	GUTS	D1 ditch	D1 stream	D2 ditch	D2 stream	D3 ditch	D4 pond	D4 stream	D5 stream	D6 ditch
Winter OSR / 150 g/ha	Α	-	-	+ 5.9	+<0.1	0	0	0	0	0
	В	-	-	+26.5	+ 3.2	0	0	0	0	0
Leafy	Α	-	-	-	-	0	0	0	-	+<0.1
vegetables / 150 g/ha	В	-	-	-	-	0	0	0	-	+ 14.8
Pome fruits / 1500 g/ha	Α	-	-	-	-	+3.7	+<0.1	0	0	-
	В	-	-	-	-	+38.4	+1.8	+<0.1	+<0.1	-
Winter cereals /	Α	+ 0.2	0	+ 64.9	+ 0.7	0	0	0	0	0
100 g/ha	В	+ 11.3	+ 10.5	+ 52.7	+ 9.8	0	0	0	0	0

Stepwise approach: 4) Selection worst case

Stepwise approach: 5) Lab exposure



Conclusion I

- Time of onset of effects (TOE) and internal carry-over toxicity also strongly affects the response of test organism
- Step-wise approach is a valuable and reproducible tool to select ecotoxicologically relevant concentration profiles for pulsed-exposure studies
- Easy-to-use and provides a reproducible and scientifically sound way to demonstrate conservative exposure profiles in higher tier aquatic risk assessments

Conclusion II

- GUTS is a powerful tool to predict effects on surival from various exposure scenarios
- Simulation of effects allows an accurate prediction of lethal effects
- Windows Implementations of GUTS model available:
 - EasyGUTS, Delphi version, GUTS 3S

EPAT and EasyGUTS can be downloaded:

https://www.rifcon.de/en/downloads

Thank you for your attention