

SETAC DRAW Current Status and Future Options for Representation of Drift

Neil Mackay¹, Andrew Chapple², Zhenglei Gao² ¹FMC Corporation, Harrogate, UK ² Bayer Crop Sciences, Monheim, Germany

Spray Drift: Dependencies and Options for Management

DRAW

Range of complex dependencies...

Drift is typically managed via;

- Generic "Good Practice" recommendations
- Supplementary specific label <u>restrictions</u>

Motivations to encourage discussion on spray drift and its management;

- Risk assessment conservatism
- Increasing risk assessment complexity
- Simplicity of drift representation
- Regulatory mitigation options constrained
- Lack of harmonisation in testing

*SDRT: Spray Drift Reduction Technology

A path forward...

Development of expanded options and robust regulatory techniques to facilitate meaningful drift risk assessment and effective risk mitigation

- This includes;
 - Organisation of multi-stakeholder SETAC workshops
 - 1st workshop Feb 2016, Montpelier, FR ☑;
 - 2nd workshop Feb 2017, Turin, IT ☑;
 - 3rd workshop Oct 17-18 2018 Wageningen, NL
 - ECPA financial support for project activities, *e.g.*,
 - Drift trials to support protocol adjustments (2016; 2017/18)
 - Wind tunnel sampler investigations
 - Modelling comparison and scenario development
 - Database collation and analysis

Extensive and valuable heritage of research

Review of available arable spray drift database

- 2307 drift trials 56,839 lines of (validated) data so far "standard" sprayer contribution is *circa* 1/3 of total database (899 trials)
- Parallel database compilation efforts completed by EFSA (released online May'17)
- Database continues to be expanded and improved.

Drivers for Variability

- How to interpret a large, diverse and variable dataset?
- Can we subdivide the dataset into more consistent "clusters" of data guided by sensitivity analysis?
- Can we derive meaningful drift curves based on these clusters?
- What are key drivers?

Multivariate Analysis

- One of the primary tasks in multivariate analysis is dimension reduction → focus on key variables
- Principle Component Analysis (PCA) reveals that "Institute" is a key differentiator
- Three key observations:
 - This is a motivation for greater harmonisation of study design!
 - Necessary to help explore other poorly understood factors (e.g. influence of landscape)
 - "Institute" is not a meaningful parameter when developing multivariate representations of drift for regulatory purposes!

Drift Dependency Sensitivity

150 200 250 300 350 400 450 500

Pressure

10 12

Tractor Speed

Crop.Height
Partial Dependence on Boom.Height

0.0 0.2 0.4 0.6 0.8 1.0

- Wind speed
- Application pressure
- Temperature
- Boom height
- Crop
- Crop development

Illustrative Empirical Model Design

- Bayesian multilevel regression model structure:
 - log(Drift) ~ b1 + b2 * log(Distance) + ϵ
 - Intercept: $b1 \sim 1 + Speed + Pressure + Temp + Wind Speed + Boom Height + <math>\epsilon_{Trial} + \epsilon_{Drift Line}$
 - Slope: b2 ~ 1 + Speed + Pressure + Temp + Wind speed + Boom Height + ϵ_{Trial}
- Data: Subsets divided by Crop and Crop Height
- Variance terms:
 - Inter-trial variance: ϵ_{Trial}
 - Intra-trial variance: $\epsilon_{Drift \ Line}$

Modelled Drift Curve Input

Illustration:

- Forward speed = 6 kph
- Wind speed = 3.2 m/s
- Application pressure = 300 kPa
- Temperature = 18°C
- Boom height = 0.5 m over target
- Crop = Monocot
- Crop development = ≤0.20 m
- How does this illustrative curve compare with data holdings?
- How does this illustrative curve compare with other derived curves?
- How to address variability or uncertainty tied to model?

0.0 Overall 90th percentile 00000 8 Variance -2.5 Model Surface — Low Crop (Illustrative Bayesian model representation*) log(Drift) -5.0 interaction(Source, Country) 0 PRI526.DE-NL 0 90th percentile curves Rautmann.DE 8 0 DE/NL subsets ο 8 PRI526.DE 0 8 PRI526.NL 0 8 8 8 -7.5-0 8 8 Θ 0 0 *Illustrative scenario: 0 8 0 0 0 Pressure=300 kPa; Temperature=18°C; 0 -10.0 -Wind speed=3.2 m/s; Tractor speed=6 kph, Boom height=0.5 m ò 2 3 log(Distance)

Illustration: Monocot Crop ≤0.20 m

Regulatory Scenarios?

Settings:

- Forward speed = ?
- Wind speed = ?
- Application pressure = ?
- Temperature = ?
- Boom height = ?
- Crop = Bare soil, monocots, dicots?
- Crop development
 - Intervals tied to BBCH bands?
 - ≤0.20, 0.2-0.4, 0.4-0.6, 0.6-1.0 m?
- Typically application settings can only be assigned by expert judgement ...
- Consensus through workshop discussions?

Inter-trial and intra-trial variance

Can we better understand influences? Incentive for study harmonisation?

Assists understanding of edge of field variability? → Feedback to study design?

WS2 Protocol: Layout and Scale

Illustration: Trial Results Vs Database

 High quality trial datasets conducted under a wide range of conditions are a useful modelling resource for model testing and development

Preparing for Future Trends

Modelling accommodates future trends:

- Modelling provides a basis for readily accommodating future trends...
- SDRT becomes the new regulatory baseline? (note Good Practice in NL)
- Essential component within "Landscape Risk Assessment"
- Current drift representations highly simplistic...
- Robust models supported by diverse, high-quality datasets for validation are essential to move forward...
- SETAC Trials contribute to this supported by nozzle (DSD) testing...

Acknowledgements

Database and statistical interpretation

- Andrew Chapple, Bayer Crop Sciences, DE
- Zhenglei Gao, Bayer Crop Sciences, DE

Field research

- Prof. Paolo Balsari, Uni. Torino, IT
- Greg Doruchowski, Inhort, PL
- Jean-Paul Douzals, IRSTEA, FR
- Andreas Herbst, JKI, DE
- Paolo Marruco, Uni. Torino, IT
- Prof. Paul Miller, Independent Consultant, UK
- Jan van de Zande, PRI, NL
- Tom Wolf, Agrimetrix, Canada

Modelling Discussions

- Clare Butler Ellis, SSAU, UK
- Henk Jan Holterman, PRI, NL

Mitigation & management website support

- Anne Alix, Corteva, UK
- Giovanna Azimonti, ICPS, IT
- Evelyne Gűsken, SciBasics, BE

Thank you for your interest!

Regulatory Relevant Discussion Points

How to best interpret complex diverse datasets?

How much differentiation is needed in derived drift curves?

How to define "realistic worst case" regulatory drift curves/scenarios?

How to best address variability / uncertainty?

How to make best use of variance analysis for research & regulation?

How to develop role for regulatory drift modelling?

