Comparison of a method of interpretation of pesticides public surface water monitoring data and a knowledge-based model of pesticides transfer at national scale

Irstea. Non point pollutions department. RiverLy. Irstea Nadia Carluer, Emilie Adoir, Claire Lauvernet, Guy Le Hénaff, Emilie Farama, Véronique Gouy

Établissement public du ministère de l'Environnement

2

- > WFD reporting: assessment of the water quality and its evolution
- > **Re-registration processes:** need of analysis methods as well
- > Development of two methods by **Irstea** for surface water bodies monitoring data interpretation and contamination risk assessment

2 – Surface water contamination risk

1 – Monitoring data interpretation

National temporal trends

assessment Developped since 2012 for the 2013 and 2019 WFD Directive reportings irstea faible moyer

Various studied pesticides

Contamination risk assessment

3

Conclusions and prospects

For AFB - French Agency of Biodiversity (2017): Study of fifteen substances, in order to help French water agencies for the WFD reporting process

- 2,4-D
- 2,4-mcpa
- aminotriazole
- bentazone
- boscalid
- chlortoluron

- diflufnican
- glyphosate
- imidaclopride métaldéhyde
- metazachlore
- nicosulfuron

- oxadiazon
- pendimethaline
- S-métolachlore
- isoproturon
- propyzamide

Studied periods : **2013-2015** for monitoring data interpretation, **2015** for the contamination risk assessment.

Substances chosen because of their quantification frequency in surface water bodies

Surface water monitoring data interpretation

www.irstea.fr

Monitoring data interpretation method

6

Hypothesis: temporal and spatial aggregation of monitoring data allows to by-pass their lack of representativeness at the station scale and to approach the contamination dynamics.

[1] Wasson J., et al. Les hydro-écorégions de France métropolitaine, approche régionale de la typologie des eaux courantes et éléments pour la définition des peuplements de référence d'invertébrés. Cemagref (2002).

Inter-annual trend of isoproturon (national scale): Consistent with weather inter-annual variability and dose reduction in 2004

Ranking of spatial and temporal situations

Isoproturon - HER modifiée 32

- ⇒ Envelop curves give trends but they don't provide a global view of each HER potential of contamination
- ⇒ Proposition of a simple indicator: mean of the envelop curve integral over the year, associated with a confidence index

Ranking of spatial and temporal situations: example of isoproturon

Ranking of spatial and temporal situations: example of Isoproturon

Cartographic representation of the ranking indicator:

Contamination risk assessment

www.irstea.fr

ARPEGES: a knowledge-based model of pesticide transfers to surface water bodies

- One active ingredient at a time
- Geographical units: water bodies catchments
- ✓ Harmonised at the national level
- ✓ 18 determinants of pesticides surface waters contamination
- ✓ 3 or 5 classes for each one (very low / low / medium / high / very high)
- ✓ Aggregation by a bayesian network

Environmental vulnerabilities: example of run-off

Variables used to calculate vulnerability to run-off:

- ✓ Run-off/Infiltration ratio
- ✓ Water content of soils
- ✓ Hydromorphy
- ✓ Crusting
- ✓ Grass strips
- ✓ Riparian areas

Environmental vulnerabilities: example of run-off

Determination of map of potential contamination and of confidence index

Gross result assessed by the bayesian network: triplet (intermediate result) or quintuplet (potential contam) of probabilities

Determination of map of potential contamination and of confidence index

Gross result assessed by the bayesian network: triplet (intermediate result) or quintuplet (potential contam) of probabilities

Determination of map of potential contamination and of confidence index

Gross result assessed by the bayesian network: triplet (intermediate result) or quintuplet (potential contam) of probabilities

Proba risk « high and very high »

Final decision

Potentiel de contamination via les transferts lents 2,4-D. Nappe Basse

Obtention des cartes de risque et d'indice de confiance

Gross result assessed by the bayesian network: triplet (intermediate result) or quintuplet (potential contam) of probabilities

- \Rightarrow Potential contamination
- \Rightarrow Specific vulnerabilities
- \Rightarrow Intrinsic vulnerabilities

0.125,0.2

.

Environmental vulnerabilities

Vulnérabilite

faible moyen fort

Vulnérabilité

faible moyer

rstea 160

Arpeges, Irstea 160808

20

faible moyen fort

Molecule-specific vulnerability short

Example for the vulnerability through slow transfers and autumn-winter

Vulnérabilité

faible

Vulnérabilité

faible

Vulnérabilite

irstea

Active substances characteristics

	Short	Métaldéhyde		
DT ₅₀	Mean	2,4-D 2,4-MCPA Aminotriazole Bentazone Nicosulfuron	Métazachlore S-métolachlore	
	Long		Boscalid Chlortoluron Imidaclopride	Diflufénicanil Glyphosate Oxadiazon Pendiméthaline
		Low	Mean	High
			K _{oc} _	

Data : BNV-D 2015

➡ the most recent and complete French database available at the time

Spatialization of the bought quantities (Method developed by INRA):

- Zip code of the buyer
- Soil occupation of the farm (RPG 2014)
- Registered rate for each crop

Five	pressure	classes	:
------	----------	---------	---

•		
U	ISLEE	

Threshold	Very low	Low	Medium	High
level (g/ha)	0.1	1	5	10

Determined considering pressure levels for the studied substances

Potential contamination: example of slow transfers and spring-summer for S-Metolachlor Confidence index

ndice de confiance (0.0.125] (0.125,0.25] (0.25,0.375) (0.375,0.5] (0.5,0.625) (0.625,0.75] (0.75,0.875) (0.875,1] 200 kr Prob. Pot. Contam. Fort + Très fort pot. contam. (0,0.125] (0.125,0.25) (0.25,0.375) (0.375,0.5] (0.5.0.625) (0.625,0.75) (0.75,0.875) Probability of high or very

high potential

Potential contamination: example of slow transfers and spring-summer for S-Metolachlor Confidence index

high potential

Potential contamination: example of slow transfers and spring-summer for S-Metolachlor

Possibility to identify the contribution of each transfer determinant

Comparison of the two methods

www.irstea.fr

Compared values :

ARPEGES potential contamination through slow transfers and one season

VS monitoring data' centile 90 annual mean integral per HER for the 3 years 2013-2015

Cartographic comparison: example of S-Metolachlor

- $\checkmark\,$ Global consistency of the results between the two methods
- $\checkmark\,$ At a closer look, local discrepancies, due to:
 - annual weather conditions
 - low confidence index of monitoring data
 - Resolution of each method

irstea

Cartographic comparison: examples of 2,4-MCPA and Nicosulfuron

ARPEGES

Potentiel de contamination via les transferts lents Nicosulfuron. Nappe basse

Nicosulfuron

Monitoring data processed

90ème centile des concentrations en 2,4-MCPA par HER, intégré et moyenné sur la période 2013-2015

Global shift between the two maps, otherwise, consistency

31

intégré et moyenné sur la période 2013-2015

90ème centile des concentrations en Nicosulfuron par HER,

Global consistency

Conclusions and prospects

www.irstea.fr

32

- One method which allows to grasp the significance and the dynamics of contamination, for one substance, in a spatialized way, at the national scale;
- One method which allows to assess the potential contamination of water bodies by one substance at the national scale, taking into account both environmental vulnerability, physico-chemical characteristics of the substance, and its use pressure;
- Those methods could be applied in other European countries for reregistration process and WFD reporting as well - as long as there are enough available data:
 - Monitoring data
 - Environmental variables at national scale
 - Pesticide pressure at national scale

This work benefits from the technical and financial support of AFB (previously : Onema) and ANSES.

Établissement public du ministère de l'Environnement

Thank you for your attention

Nadia Carluer Nadia.carluer@irstea.fr

www.irstea.fr

35

Établissement public du ministère de l'Environnement

Monitoring data limits

Hypothesis : temporal and spatial aggregation allow to approach the contamination dynamics.

30 -

Proportion of stations

10 -

0

10

01/01/2003 01/01/2005 01/01/2006 01/01/2004 20 30 40 (Elorn at Pont-Ar-Bled, 260 km²) Date Annual sampling frequency

Monitoring data description

Data heterogeneity in :

AMPA Chortoluron Propyzamide S-Metolachlore Scale

- The Water Agencies' strategies sampling

Special case of glyphosate (and AMPA) : pesticide sold in the largest quantities, but the least sampled and with the highest proportion of quantifications

Propyzamide - HER modifiée 25

0.9

0.6

Summer transfers not

visible at national scale

moyenne centiles

Année

2010

- 2011

---- 2012

moyenne

centiles

Année

2007 -

2008

2009

2010

--- 2011

---- 2012

Ranking of spatial and temporal situations

- Curve envelops give trends but are not easy to use to have a global view of \Rightarrow each HER potential of contamination
- Proposition of a simple indicator: mean of the envelop curve integral over \Rightarrow the year

39