

Planbureau voor de Leefomgeving

The EFSA PPR Opinion on the UK Aged Sorption Guidance

Aaldrik Tiktak

October 2018 European Modelling Workshop Copenhagen

- Introduction
- Issues already covered in the statement
- Case studies
- Combining first tier and higher tier data
- Handling of metabolites
- Deriving aged sorption parameters in field studies
- Conclusions and recommendations

Aged sorption is a higher tier approach

 Lower tier data cannot be ignored in higher tiers of the risk assessment

- Introduction
- Issues already covered in the statement
- Case studies
- Combining first tier and higher tier data
- Handling of metabolites
- Deriving aged sorption parameters in field studies
- Conclusions and recommendations

The two-site model is a reasonable compromise

 The guidance uses the PEARLNEQ-model, which uses a two side model for sorption

The two-site model is a reasonable compromise between

the ability of the model to describe aged sorption under a range

of situations

 the possibility to determine reliable model parameters from experiments with reasonable effort

 comparable models are acceptable as well

- Introduction
- Issues already covered in the statement
- Case studies
- Combining first tier and higher tier data
- Handling of metabolites
- Deriving aged sorption parameters in field studies
- Conclusions and recommendations

Cases studies: the core of the opinion

- ECPA provided data on roughly 50 substances
- The WG chose three substances for testing the guidance
 - Contrasting properties: ECPA-01 low sorption, ECPA-07/06: intermediate and high sorption
 - Both lower-tier and higher tier data available

Table 1: Overview of datasets provided by ECPA used for testing the guidance document

Substance name	ECPA-01	ECPA-06	ECPA-07
	Lower-tie	er data	
Full study reports	No	Yes	Yes
DegT50 lab (d)	Data not evaluated	115 - 318	50 - 173
DegT50 field (d)	No data	68 – 224	No data
Kom (L kg-1)	2 – 28	122 - 238	43 - 77
1/n(-)	0.86 - 0.95	0.87 - 0.97	0.84 - 0.90
	Data on time-depe	endent sorption	
Full study reports	No	Yes	Yes
Number of studies	4	4	4
five (-)	0.43 - 0.49	0.63 - 0.79	0.35 - 0.76
Kaes (d-1)	0.042 - 0.058	0.027 - 0.047	0.028 - 0.039
DegT50eq (d)	62 -144	78 - 177	45 - 80

Aged sorption was relevant in all cases

- The GD asks for a visual and statistical check of the fit
 - Both passed the pre-set quality criteria
- Example: increase of the sorption coefficient with time

Applicability of the GD is complicated for non-experts

- A user-friendly software tool that support the entire workflow was missing
 - Recommendation: develop such a tool after consultation of stakeholders
- The GD suggested refinement options for model fitting that may give ambiguous results
 - The WG recommends a simplified procedure using $K_{om,eq}$ as a fitting parameter only
- A flowchart describing how to combine lower and higher tier studies is missing

Results

- Aged sorption always reduces leaching for a specific soil
 - Effect larger for substances with a high K_{om}

Results

- Aged sorption generally reduces leaching
 - Effect larger for substances with a high K_{om}
 - Samples from different subsets of soils may complicate this finding

Handling variability of half-lives in soil

- Four samples not enough to provide a robust estimate of properties in all soils
 - Coefficient of Variation of half-lives > 25%
 - So if different soils are taken for Tier-1 than for Tier-2a, a higher geomean half-live can be obtained with higher leaching

Use all half-live values

- Given this large variability, the WG recommends using halflives from all soils (Tier-1 and Tier-2a combined)
 - This may lead to higher leaching at Tier-2a but was never been the case in our examples

- Introduction
- Issues already covered in the statement
- Case studies
- Combining first tier and higher tier data
- Handling of metabolites
- Deriving aged sorption parameters in field studies
- Conclusions and recommendations

Flowchart for combining the tiers

Flowchart for combining the tiers

Flowchart for combining the tiers

- Introduction
- Issues already covered in the statement
- Case studies
- Combining first tier and higher tier data
- Handling of metabolites
- Deriving aged sorption parameters in field studies
- Conclusions and recommendations

Aged sorption and metabolites

- GD was not conclusive, so the WG provided recommendations based on simulations with artificial compounds:
 - Derive aged sorption from metabolite-dosed studies
 - Derive the formation fractions from parallel parent-dosed studies, provided that the parent and the metabolites are fitted with the best model, i.e. the DFOP model

Aged sorption and field studies

- Deriving aged sorption parameters from field studies requires inverse modelling with numerical models such as PEARL or PELMO
- The GD does not contain fully worked out guidance to parameterize such models and a dataset to test this was not available
- For these two reasons, the WG recommends further development and testing of the guidance for field studies before it is used in regulatory practice

Two models will still be needed

- Differences between PEARL and PELMO increase slightly
- Usually within a factor of two, which is very small given the overall uncertainty

- Introduction
- Issues already covered in the statement
- Case studies
- Combining first tier and higher tier data
- Handling of metabolites
- Deriving aged sorption parameters in field studies
- Regulatory Relevant Conclusions

Regulatory Relevant Conclusion - 1

- General impression:
 - Authors of the revised GD have followed most of the recommendations in the statement
 - A very well worked-out GD
 - Some recommendations left
- The Panel considers the guidance suitable for use in the regulatory process after the recommendations in this scientific opinion have been implemented
 - With the exception of the guidance for field studies

Regulatory Relevant Conclusion - 2

- The FOCUS GW Tiered-Approach needs revision
 - Calibration of lower tiers against higher tiers necessary to avoid that regulators ask for lower-tier assessments
 - To avoid inconsistency it is recommended to always carry out a CaCl₂ extraction, even for Tier-1 assessments
 - For calibration an agreed version of a spatial model (e.g. GeoPEARL) is absolutely necessary
 - Guidance for dealing with
 monitoring data is needed as well

Regulatory Relevant Conclusion - 3

- Given the potential large effect of including aged sorption, the GD is too optimistic about the contribution of various sources of uncertainty to the leaching assessment
- Variability of degradation and sorption coefficients should be dealt with in the leaching assessment
 - Variability of these parameters is considerable (>50%)
 - Ignoring this variability leads to an underestimation of the leaching concentration (refer to EFSA GD on PECs in soil)

Acknowledgements

- The Aged Sorption Opinion has been written by
 - Aaldrik Tiktak (Netherlands)
 - Arnaud Boivin (France)
 - Mark Egsmose (EFSA)
 - Anne Louise Gimsing (Denmark)
 - Roy Kasteel (Switzerland)
 - Michael Klein (Germany)
 - Jose Oriol Magrans (EFSA)
 - Michael Stemmer (Austria)
 - Ton van der Linden (Netherlands)

Disclaimer - the views expressed in this presentation are those of the author, and not those of EFSA.

In memoriam Ton van der linden

 During the development of the opinion, we lost an outstanding scientist and a loyal and friendly working group member

