

Acknowledgements

Paul Sweeney, PhD – Syngenta, Ltd.

Syngenta, Ltd. has provided support for the development and enhancements of the European Modelling Framework that will be presented in this talk.

Table of contents

- 1. Higher Tier Distributed Modelling
- 2. Building a Framework
- 3. European Modelling Framework (EMF)
 - Uses of the EMF
- 4. In Summary

Higher Tier Modelling (EFSA 2013 Opinion)

Figure 1: Proposed Generic Tiered Assessment Scheme for Ground Water (FOCUS 2009)

Tier 3b

- Spatially distributed modelling is a valuable tool
- Spatially distributed modelling is more important on a national level
- The PPR Panel considers that the establishment of a high quality spatial model at the national level, taking more accurate national soil maps and weather data into account, would be more straightforward
- Spatially distributed modelling is a promising and practical way of risk assessment

Distributed Modelling – Through the years

Distributed Modelling - Member States

Building a Framework - Considerations

Framework - Regulatory Context

Framework - Model

Framework - Resolution

Framework - Land Use

What crop(s) are you targeting?

Framework - Climate

Framework - Climate

Use EFSA FOCUS Zones or develop FOCUS Zones based on your data?

Framework - Soils

Framework - Soils

Framework - Crops & Management Practices

A total of 2013 scenarios for permanent crops and row crops grown on ridges were determined for EU by Beulke et al. (2015).

CAPRI can be used as a spatial filter

9th EU Modelling Workshop - Copenhagen, DK Waterborne Environmental Inc © 2018

EMF – Spatial Schematization

Designed with "worse case" in mind

Designed with "variability and member state level assessments" in mind

EMF2014

- EMF
 - 8 FOCUS zones
 - 6680 weather files
 - Over 250,000 unique soil profiles
 - 382,862 unique plots
 - 5196 (Porto)
 - 126049 (Hamburg)
 - Arable lands
 - Maize, sunflower, cereals, OSR, wheat, potatoes, etc.
 - Several post and pre-processing scripts to handle the modelling and data
 - Dos / SQL / Python

- Distribution of:
 - Concentrations (80th)
 - Water fluxes
 - Mass fluxes
- Different time steps

- Determining vulnerable areas
- Combined one or more compounds
- Set ancillary criteria

- Context setting of
 - Standard Scenarios
 - Field Sites

 Determining potential locations for monitoring in top 25th percentile vulnerable areas

1. Aggregated data

3. Site selection

Conclusions

- When developing a distributed modelling framework users will need to consider
 - Regulatory setting and guidance
 - Resolution of the framework and supporting datasets (tradeoff between refinements and cost for running the model)
 - Land use, climate and soil database to be used
- Distributed modelling frameworks such as the EMF can be used for
 - Regulatory support (Tier 3b)
 - Vulnerability assessments
 - Context setting
 - Crop specific assessments
 - Site selection
 - Screening of new compounds
- Once developed distributed modelling frameworks like EMF provide a versatile and standardized approach to higher tier modelling

On Database Versioning

- Databases with current versioning (control):
 - CORINE 2000 land cover database at 100m or 250m resolution
- Databases with only one version:
 - EFSA OM, pH (fixed data, no new releases scheduled)
 - ESDB derived data
 - LUCAS (top soil only)
- Databases with no version control that require cleaning:
 - JRC MARS 25km (user should document which years were used and what data cleaning has occurred)
 - For <1% of the record min temp > max temp
 - JRC frequently updates erroneous data if they are made aware of it
 - GESDB & SPADE (requires significant cleaning)
- Databases with limited usage
 - Soilgrid 250m (not ready for prime time usage due to data inconsistencies in sum of sand/silt/clay and vanGenuchten parameters)

National-level databases are not considered as they are too many and greatly vary.

On Database Needs

- Users of the JRC MARS 25km daily weather data, JRC Soils database, CORINE Land Cover Database and CAPRI crop database need to articulate their needs.
- Needs:
 - JRC MARS 25km: Fix instances in database where Tmin > Tmax
 - JRC MARS 25km: Ensure at 26 yrs of continuous data for northern European countries such as Sweden, Finland and the Baltic states
 - JRC ESDB: Need for a reliable 1:250,000 soil map like the current 1x1 km ESDB or European Soil Database Derived data. Critical are that both top soil (0-30cm) sub soil (30-100cm) are included. This layer would provide a transition from pan-European datasets to member state level datasets. Ideally this database is based on member state data and is geared towards (landscape) modelling
 - CAPRI: Update CAPRI crop database that provides an overview of more recent crop statistics as well as small HSMU's. The range of the current HSMU size is not very practical.

Thank you!

Special thanks to my colleague **Megan Guevara** for doing most of the actual modelling runs and data processing!